

Basics of Buffer and Barrier Seal Support Plans

by Alfred Low

What is a Buffer Fluid Plan?

- An unpressurized fluid system with a reservoir (seal pot) that is used to provide cooling or lubrication to fluids with poor lubricating characteristics, such as light hydrocarbons
- Buffer fluids should have a lower vapor pressure than the sealed fluid
- Allows the process fluid leakage to bubble through the buffer fluid and be vented to flare

What is Barrier Fluid Plan?

- It is a pressurized fluid system with a reservoir (seal pot) that is used when the process fluid must be isolated from the environment to prevent flashing, crystallization, polymerization, or when the pumped fluid is toxic/hazardous
- Barrier fluids are usually pressurized 15-30 psi above the seal chamber pressure

Typical Reservoir (Seal Pot) Requirements

- 2 types of configurations
 - Fully welded
 - Flanged end (for cleanout)
- ISO 15649 or ASME B31.3 compliant
- Typical volumes
 - 12L (≤60mm pump shaft)
 - 20L (>60mm pump shaft)

Plan	Description	Design
Plan 51	 Dead-ended to quench connection Used with auxiliary sealing device Valve closed before startup Note : Per API 682, this plan is only recommended for vertical pumps, but in practice it has also been used on horizontal pumps. 	
Plan 52	 Unpressurized buffer fluid circulated with pumping ring Cooling coils in reservoir (optional) Typically coupled with a flush plan Note : A buffer fluid drain is to be located on the lower point of the buffer inlet. 	

Plan	Description	Design
Plan 53A	 Pressurized barrier fluid Cooling coils in reservoir Note : A barrier fluid drain is to be located on the lower point of the barrier inlet. 	
Plan 53B	 Bladder accumulator isolates pressurizing gas from barrier fluid Prevents gas entrainment in barrier fluid Note : A barrier fluid drain is to be located on the lower point of the barrier inlet. 	<image/>

Plan	Description	Design
Plan 53C	 Piston Accumulator (intensifier) references seal chamber pressure and provides positive differential to barrier fluid No external pressure source 	

Source: Swagelok Mechanical Seal Support Systems Training